skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adhikari, Rana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We investigate the feasibility of using trees as a seismic meta-material that could shield the LIGO detectors from seismic activity. This seismic cloak would reflect low frequency surface waves away from the detector, thereby increasing the sensitivity of the detectors. This study models the energy transfer from surface waves as they pass through the bandgap filters designed from trees in different arrangements. The attenuation and rejection will hopefully serve to cloak the LIGO detectors from seismic activity. This work could have future impact on high sensitivity detectors, leading to more detections of merger events. 
    more » « less
  5. null (Ed.)
  6. This project is focused on improving the optics in LIGO by characterizing mirror figure error that contribute to optical losses. We develop a method to measure surface deformations with in-Situ mode spectroscopy, measuring the resonant frequencies of the higher order Hermite Gaussian modes resonant in LIGO's Fabry-Perot cavities, that are shifted from their ideal spacings due to those deformations. We use this information to construct mirror phase maps. that characterize the figure error. 
    more » « less